
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Lifting Compiler Security Properties
to Stronger Attackers: the Speculation Case
Xaver Fabian

Cispa Helmholtz Center for
Information Security
Saarbrücken, Germany

Marco Guarnieri
IMDEA Software Institute

Madrid, Spain

Michael Backes
Cispa Helmholtz Center for

Information Security
Saarbrücken, Germany

1 Introduction
Speculative execution avoids pipeline stalls by predicting
intermediate results and by speculatively executing instruc-
tions based on such predictions. When a prediction is in-
correct, the processor squashes the speculative instructions,
thereby rolling back their effect on the architectural state.
Speculative instructions, however, leave footprints in mi-
croarchitectural components (e.g., caches) that persist even
after speculative execution terminates. Modern processors
have different speculation mechanisms (branch predictors,
memory disambiguators, etc.) that are used to speculate over
different kinds of instructions: conditional branching [10],
indirect jumps [10, 13], store and load operations [8], and
return instructions [11]. As shown by Spectre [10], attack-
ers can exploit the side effect of these instructions to leak
information about speculatively accessed data.
Countermeasures against speculative leaks are typically

developed as secure compiler passes. These passes have one
concrete attacker model in mind, that is, an attacker that
observes certain specific events during the execution of the
program e.g., memory effects via store and load observations.
Thus, a secure compiler is secure w.r.t a concrete attacker.
For example, the SLH countermeasure [3] is used against
Spectre v1; there, the attacker is able to observe speculative
execution of branch instructions.

However, three concerns arise in this setting. First, when
the developer of the secure compiler pass does not consider
other kinds of speculation (or, different attackers observing
different kinds of speculation) new speculative leaks arise,
as in the case of the work of Daniel et al. [4]. Second, new
sources of speculation are still discovered to this day [2, 13],
so we need to make sure that countermeasures have no
speculative leaks even with respect to new attacks. Third,
some secure compiler passes turn out to be secure even with
regards to a stronger attacker, namely one that is observing
more speculative leaks.
In this paper, we want to identify when compilers can

be secure even for stronger attackers and we devise a for-
mal framework for establishing exactly the kind of well-
formedness conditions that lead to these kind of security
guarantees.

The rest of the paper is structured as follows. First, we de-
vise a way to combine different attacker models into stronger

ones (Section 1.1). Second, we define the necessary condi-
tions to lift our secure compiler pass from being secure
against the weaker attacker to being secure against the
stronger attacker (Section 1.2) and show that in certain cases
(relevant to Spectre countermeasures) we can derive the well-
formedness conditions for free using a syntactic argument
(Section 1.3). Lastly, we discuss whether existing Spectre
countermeasures satisfy these conditions (Section 1.4).
We focus on countermeasures against Spectre attacks,

though we think our definitions scale to a more general
setting too, but we leave this investigation to future work.

1.1 General Definitions and Combined Attacker
We use 𝜇Asm, an assembly-like language [7] for the defi-
nition of our semantics and define the attacker using the
contract framework of Guarnieri et al. [6]. Contracts are
defined as the combination of an observer and an execution
mode. The observer governs what information a contract
exposes and is defined via labels on the semantics. The exe-
cution mode characterizes which paths of the program need
to be explored. We fix the observer to be the constant-time
attacker [1, 12] and define the execution mode using our
semantics, capturing different sources of speculation. We
write 𝑥 to indicate the attacker with execution mode for
Spectre variant 𝑥 and the fixed constant-time observer.
Now, a stronger attacker can observe more speculative

leaks than a weaker one. We use the framework proposed by
Fabian et al. [5], which combines speculative semantics 𝑥

and 𝑦 into a new combined speculative semantics 𝑥𝑦

allowing for speculation of both source semantics at the
same time, as new execution modes for our contracts. Thus,
the attacker 𝑥𝑦 is stronger than the attacker 𝑥 and 𝑦 .

Compilers J·K compile from 𝜇Asm to 𝜇Asm. We write J·K𝑥
to mean that the compiler inserts a countermeasure against
semantics 𝑥 . We call a program speculative safe for variant
𝑥 , written ⊢ 𝑥 𝑝 : SS, iff there are no speculative leaks under
the 𝑥 attacker and a compiler is speculative safe written
⊢ 𝑥 J·K𝑥 : SS, iff it does not leak under variant 𝑥 , i.e., iff
∀𝑝, ⊢ 𝑥 J𝑝K : SS .

1.2 Well-Formed Translator
We say that a compiler for variant 𝑦 is a well-formed transla-
tor for variant 𝑥 if the compiler does not add leakage under
either 𝑥 or 𝑦. Intuitively, a compiler attains this property,

1



111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

PriSC ’24, January 20, 2024, London, UK Fabian, Guarnieri and Backes

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

when it is already preventing leaks under 𝑦 (dubbed Security
in Source) and when it is independent of leaks introduced
by variant 𝑥 (dubbed Independence).
Security in Source tells us that the countermeasure of

the compiler is effective under attacker 𝑦 and it ensures
that the compiler countermeasure works.
Independence means that a compiler J·K𝑦 against at-

tacker 𝑦 does not introduce new vulnerabilities under the
attacker of 𝑥 . Phrased differently, there are no bad interac-
tions happening by the introduction of the compiler coun-
termeasure into program 𝑝 under the attacker of 𝑥 . For
example, the retpoline countermeasure [9] protects against
Spectre v2 by inserting ret instructions into the program.
Spectre v5 abuses speculation on ret instructions. Thus, the
question naturally arises if the newly introduced ret instruc-
tions introduced by the countermeasure for Spectre v2 can
be abused to create a speculative leakage caused by Spec-
tre v5. If the retpoline countermeasure fulfils independence,
then we know that the introduced ret instructions do not
yield new speculative leaks under the Spectre v5 attacker.
Definition 1 (Well-formed Translator (WFT)).
We call a compiler J·K𝑦 a well-formed translator for 𝑥 written
⊢ J:K𝑦WFT

𝑥
with respect to two source languages 𝑥 and

𝑦 and their well-formed composition 𝑥𝑦 iff:

Security in Source ⊢ J·K𝑦 : SS
Independence ⊢ 𝑥 𝑝 : SS =⇒ ⊢ 𝑥 J𝑝K𝑦 : SS

Equipped with the definition of a WFT, we can define the
main corollary of our work. Namely, we can embed a secure
compiler pass for variant 𝑦 into a stronger attacker model

𝑥𝑦 , provided that the compiler J·K𝑦 is a WFT for 𝑥 and
the program being speculative safe under the 𝑥 attacker.
Corollary 1 (Lifted Compiler Preservation).
⊢ (J·K𝑦 : WFT

𝑥
∧ ⊢ 𝑥 𝑝 : SS =⇒ ⊢ 𝑥𝑦 J𝑝K𝑦 : SS

1.3 Easier Independence Proofs
Using our running example of Spectre v2 and Spectre v5,
we can see that the newly introduced ret instructions by

the retpoline compiler could yield new speculative leaks
caused by Spectre v5 in the combination. That is why we
have the Independence condition in the definition of well-
formedness that we need to prove. However, consider a se-
cure compiler pass J·Kf5 only inserting fences into the pro-
gram to protect against Spectre v5. These fences cannot
interact badly with other speculation mechanisms but we
would still need to prove independence! Thus, we derive
another condition, Syntactic Independence, that captures
these cases when there are trivially no bad interactions and
show how we can derive Independence for free.
As the name suggests, Syntactic Independence can be

checked by syntactic inspection of the compiler J·K and the
target attacker 𝑦 . For example, for Spectre v5 and J·Kf5
the instructions related to speculation are {ret} and the in-
structions added by the compiler are {fence}.

We are now ready to define Syntactic Independence:
Definition 2 (Syntactic Independence).
A compiler J·K𝑥 is called syntactically independent of a source
language 𝑦 with speculation written ⊢ J·K𝑥 : 𝑆𝐼

𝑦
iff the

compiler does not insert any instructions during compilation
that are related to speculation in language 𝑦 .

Next, we connect syntactic independence to independence
via the following corollary:
Corollary 2.
⊢ J·K : 𝑆𝐼

𝑦
=⇒ (⊢ 𝑦 𝑝 : SS =⇒ ⊢ 𝑦 J𝑝K : SS )

Since syntactic independence is a syntactic property of the
compiler and the attacker, it is simple to check and together
with Corollary 2 we are able to derive independence for free.

1.4 Application to Existing Countermeasures
A preliminary investigation seems to suggest that indepen-
dence or syntactic independence applies to several existing
countermeasures against Spectre attacks (Table 1). These
results still need to be formalized and we plan to investigate
when 𝑆𝐼 is not enough (the 𝐼 entries).

Compiler 1+2 1+4 1+5 2+4 2+5 4+5 1+4+5 1+2+4 2+4+5 1+2+5 1+2+4+5

J·Kf4 SI SI SI SI SI SI SI
J·K

.−
2 SI SI I SI I I I

J·KSLH1 SI SI SI SI SI SI SI
J·Kf5 SI SI SI SI SI SI SI
J·Kidx1 SI ✗ SI ✗ ✗ SI ✗

Table 1. Lists of Secure compilers and how they attain Independence. SI means by Syntactic Independence, I means by proving
Independence and ✗ means that Independence is not possible. J·K

.−
2 is the retpoline compiler [9], J·Kidx1 is the countermeasure

described by [4], J·K𝑓𝑥 inserts fences into the program and J·KSLH1 implements the SLH countermeasure [3]. Empty cases are
orthogonal attackers, where the definition of well-formed translator is not applicable.

2



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Lifting Compiler Security Properties
to Stronger Attackers: the Speculation Case PriSC ’24, January 20, 2024, London, UK

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

References
[1] Jose Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François

Dupressoir, and Michael Emmi. 2016. Verifying Constant-
Time Implementations. In 25th USENIX Security Symposium
(USENIX Security 16). USENIX Association, Austin, TX, 53–
70. https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/almeida

[2] arm. 2020. Straight-line Speculation. https://developer.arm.com/
documentation/102825/0100/?lang=en. Accessed: 2022-09-05.

[3] Chandler Carruth. 2018. Speculative Load Hardening. https://llvm.
org/docs/SpeculativeLoadHardening.html

[4] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. 2021. Hunting
the Haunter — Efficient relational symbolic execution for Spectre with
Haunted RelSE. In Proceedings of the 28th Annual Network and Dis-
tributed System Security Symposium (NDSS ’21). The Internet Society.

[5] Xaver Fabian, Marco Guarnieri, and Marco Patrignani. 2022. Au-
tomatic Detection of Speculative Execution Combinations. In Pro-
ceedings of the 2022 ACM SIGSAC Conference on Computer and Com-
munications Security (Los Angeles, CA, USA) (CCS ’22). Association
for Computing Machinery, New York, NY, USA, 965–978. https:
//doi.org/10.1145/3548606.3560555

[6] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. 2021.
Hardware-software contracts for secure speculation. In 2021 IEEE
Symposium on Security and Privacy (SP). IEEE, 1868–1883.

[7] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez. 2020.
Spectector: Principled Detection of Speculative Information Flows.

In 2020 IEEE Symposium on Security and Privacy (SP). 1–19. https:
//doi.org/10.1109/SP40000.2020.00011

[8] J. Horn. 2018. Speculative execution, variant 4: Speculative store
bypass. https://bugs.chromium.org/p/project-zero/issues/detail?id=
1528. Accessed: 2021-04-11.

[9] Intel. 2018. Retpoline: A Branch Target Injection Mitiga-
tion. https://www.intel.com/content/dam/develop/external/us/en/
documents/retpoline-a-branch-target-injection-mitigation.pdf

[10] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. 2019. Spectre Attacks:
Exploiting Speculative Execution. In Proceedings of the 40th IEEE Sym-
posium on Security and Privacy (S&P ’19).

[11] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. 2018. Spectre Returns! Speculation At-
tacks Using the Return Stack Buffer. In Proceedings of the 12th USENIX
Workshop on Offensive Technologies (WOOT’18). USENIX Association.

[12] David Molnar, Matt Piotrowski, David Schultz, and David Wagner.
2006. The Program Counter Security Model: Automatic Detection
and Removal of Control-Flow Side Channel Attacks. In Information
Security and Cryptology - ICISC 2005, Dong Ho Won and Seungjoo
Kim (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 156–168.

[13] Johannes Wikner and Kaveh Razavi. 2022. RETBLEED: Arbitrary
Speculative Code Execution with Return Instructions. In Proceedings
of the 31st USENIX Security Symposium (USENIX Security ’22). USENIX
Association.

3

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://developer.arm.com/documentation/102825/0100/?lang=en
https://developer.arm.com/documentation/102825/0100/?lang=en
https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html
https://doi.org/10.1145/3548606.3560555
https://doi.org/10.1145/3548606.3560555
https://doi.org/10.1109/SP40000.2020.00011
https://doi.org/10.1109/SP40000.2020.00011
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://www.intel.com/content/dam/develop/external/us/en/documents/retpoline-a-branch-target-injection-mitigation.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/retpoline-a-branch-target-injection-mitigation.pdf

	1 Introduction
	1.1 General Definitions and Combined Attacker
	1.2 Well-Formed Translator
	1.3 Easier Independence Proofs
	1.4 Application to Existing Countermeasures

	References

